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Abstract.   Coefficients of characteristic polynomials (CP) of linear polyacenes (LP) 
have been shown to be obtainable from Pascal’s triangle by using a graph factorisation 
and squaring technique. Strong subspectrality existing among the members of the 
linear polyacene series has been shown from the derivation of the CP’s. Thus it has 
been shown that the entire eigenspectrum of an n-ring LP is included in that of 
(2n + 1)-ring LP. Correspondence between the eigenspectra of linear chains and LP’s 
is brought out by a recently developed vertex-alternation and squaring algorithm. 
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1.   Introduction 

Although a closed formula for the eigenspectra of linear polyacene (LP) graphs is 
known 1, no such formula for their characteristic polynomials (CP) exists in the literature. 
On the other hand, search for a hierarchical structure of the CP coefficients of graphs has 
been of interest for a long time. For example, Randic 2 showed the use of Young diagrams 
and traces of adjacency matrices of graphs for determination of their CP coefficients. El-
Basil 3 showed how Fibonacci relations and Lucas sequences can be used to generate CPs 
of a family of graphs starting from smaller ones. Generation of CP coefficients of 
reciprocal graphs 4 from Pascal’s triangle has recently been shown 5. This triangle, in its 
symmetric and anti-symmetric forms, has been shown 6 to be of use in the enumeration of 
s, p, d, f, ... orbitals of the H-atom in D-dimensional hyperspace. The object of the present 
paper is to show how the CP coefficients of linear polyacene (LP) graphs are related to 
Pascal’s triangle (PT). Subspectrality in the series of LPs will also be explained.  

2.   Experimental 

2.1   Construction of CP of a general LP by graph factorization 

The graph of a general n-ring linear polyacene, (LP)n, can be factorised as shown in figure 1 
by McClelland’s method of mirror plane fragmentation 7,8. We now define a function  
 
*For correspondence 
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Figure 1.   Mirror plane fragmentation of a linear polyacene. 
 
 
Fi(x) = (x −  h)x(x −  h)x ... to i factors, (1) 

 
where i is an odd integer. The linear chain Ln

(h) having successively alternating vertex 
weights h, 0, h, 0, ..., can be easily shown to have the CP,  
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where [n/2] is the largest integer not greater than n/2. The mirror plane fragments of 
(LP)n, where n may be both odd and even, are chains of the above type with (2n + 1) 
vertices. The value of h is +1 for the left hand and –1 for the right hand fragment. We 
denote these by L(1)

2n + 1 and L(–1)
2n + 1 respectively. Consequently, the CP of (LP)n is given 

by,  
 

P((LP)n; x) = P(L(1)
2n + 1; x)P(L(–1)

2n +1; x), (3) 
 
where  
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F+

2n +1 – 2k = (x −  1)x(x −  1) ... to 2n + 1 – 2k factors, (6) 
 
and 
 

F–
2n +1 – 2k = (x + 1)x(x + 1) ... to 2n + 1 – 2k factors. (7) 

 
Some examples are given in table 1. It can now be noted that the coefficient of F+

1, F+
2, ... 

in the left hand fragments and F–
1 , F–

2 , .... in the right hand ones in the CP of (LP)n are 
numbers appearing in Pascal’s triangle as shown in figure 2. The required numbers are 
enclosed in parentheses. The parallel arrows contain the coefficients of the Fi’s as 
indicated in figure 2. 

3.   Subspectrality in the series of linear polyacenes 

Each F2n + 1 – 2k contains an odd number of factors and in the expansion (4), all the terms 
of P(L(1)

2n + 1, x) have a common factor (x −  1); similarly (x + 1) is a common factor of 
P(L(–1)

2n + 1, x). This explains the occurrence of ± 1 as two eigenvalues common to all 
(LP)n. Successive mirror plane fragmentation also brings out an interesting feature about 
the eigenspectra of (LP)ns −  the eigenspectrum of (LP)n is entirely contained in that of 
(LP)2n +1 i.e.,  
 

{e(LP)n} ⊂  {e(LP)2n + 1}. (8) 
 

Thus the eigenspectra of benzene, naphthalene, anthracene, are contained in those of 
anthracene, pentacene, heptacene respectively. The reason for this is obvious from the 
scheme shown in figure 3. For verification of this feature some (LP)n eigenspectra, 
collected from Coulson’s compilation of HMO eigenvalues 1, are shown in table 2. 

A number of graphs are said to be ‘strongly subspectral’ if they have many eigenvalues 
in common. The strong subspectrality among the (LP)n graphs just demonstrated brings out 
an example of ‘accidental degeneracy’. Thus anthracene has two pairs of eigenvalues 
with two-fold degeneracy viz. (± 1, ± 1) and (± 1⋅4142, ± 1⋅4142) although it belongs 
to the abelian D2h point group and is, therefore not expected to possess  
 

 
Table 1.   Characteristic polynomials of some linear polyacenes in terms of linear 
chains. 

n CP of each linear fragment* 
 
1 F3 – 2F1 
2 F5 – 4F3 + 3F1 
3 F7 – 6F5 + 10F3 – 4F1  
4 F9 – 8F7 + 21F5 – 20F3 + 5F1 
5 F11 – 10F9 + 36F7 – 56F5 + 35F3 – 6F1 

* ‘+’ and ‘− ’ signs as superscripts of F have been omitted for convenience; they 
should be used adequately for the appropriate fragments 
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Figure 3.   Subspectrality of benzene and anthracene. 

 
 

Table 2.   Eigenvalues of n-ring linear polyacenes (other than the common ±1). 

n Eigenvalues 
 
1 ± 2, ± 1 
2 ± 2⋅3028, ± 1⋅6180, ± 1⋅3028, ± 0⋅618 
3 ± 2⋅4142, ± 2, ± 1⋅4142, ± 1⋅4142, ± 0⋅4142, ± 1 
4 ± 2⋅4667, ± 2⋅1935, ± 1⋅7775, ± 1⋅4667, ± 1⋅2950, ± 1⋅1935, ± 0⋅7775, ± 0⋅2950  
5 ± 2⋅4955, ± 2⋅3028, ± 2, ± 1⋅6180, ± 1⋅4955, ± 1⋅3028, ± 1⋅2197, ±1, ± 0⋅6180, ± 0⋅2197 
 
 

degenerate eigenvalues. Considered from the view-point of D2h symmetry operations 
only, this degeneracy seems to be ‘accidental’. However, anthracene has a bipartite graph 
and if ‘colour pairing symmetry’ 9 is coupled with D2h symmetries, then probably the 
roots of the observed degeneracy can be revealed. This however requires a separate and 
detailed analysis and will be dealt with in a future communication. 

4.   Correspondence between the eigenspectra of (LP)n and linear chain (Ln)  

To determine this correspondence, a recently developed vertex-alternation and squaring 
scheme 10 has been utilised which is outlined below. 

Let Ln (alt) be a linear chain with n vertices of weights alternating as h, –h, h, –h, ... , 
the edge-weights being arbitrary. After maximal starring of the vertices, if the starred 
vertices are labelled first as 1, 2, 3, .... r and the unstarred ones as r + 1, r + 2, ... n then it 
can be shown 10 that the square of the adjacency matrix A of Ln (alt) is block-factored as  
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and that each block is the adjacency matrix of a smaller linear chain whose vertex and 
edge-weights can be calculated by the following steps.  
 
(1) Draw a linear chain L* by taking only the starred vertices labelled 1, 2, 3, ... r. 
Similarly, draw a separate chain L0 by taking only the unstarred vertices.  
(2) The edge-weight between the vertices i and j in L* (or L0 ) is the product of the edge-
weights in going from i to j in the original graph, Ln (alt). 
(3) The weight of the vertex i in L* (or L0 ) is the sum of the square of the vertex-weight 
at i and the squares of the weights of the edges incident to i in Ln (alt).  
 

Under this scheme B1 and B2 are found to be the adjacency matrices of L* and L0 
respectively. This is illustrated in figure 4. 

The right hand mirror-plane fragment of (LP)n graph is a linear chain with successive 
vertex-weights –1, 0, –1, 0, ... Now, if each vertex weight is increased by 0⋅5, which 
amounts to a diagonal shifting of the corresponding adjacency matrix, the resulting chain 
has the desired vertex-weight pattern, –0⋅5, 0⋅5, –0⋅5, 0⋅5, ... After maximal starring of 
this chain and following the steps (1)–(3), the block B2, which corresponds to the 
unstarred vertices, is found to be a linear chain of n vertices each carrying a weight of 
2⋅25. The entire scheme is shown in figure 4. A further diagonal shifting by –2⋅25 
converts this into a simple linear chain, Ln .Utilising this and the fact that (LP)n is an 
alternant system, we can trace back from the bottom of figure 4 to arrive at 4n 
eigenvalues of (LP)n in the analytic form, 
 
 

 
Figure 4.  Correlation of the eigenspectrum of the right hand mirror-plane fragment of 
(LP)n with that of Ln. 
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{e(LP)n} = ± [–0⋅5 ± [2⋅25 + ej(Ln)]1/2], (9) 
 
where ej(Ln), j = 1 to n, is the set of n eigenvalues of Ln. Thus, apart from the eigenvalues 
± 1, the entire eigenspectrum of the (LP)n has a one-to-one correspondence with that of 
Ln. 
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